my blogger
Powered by Blogger.

music

About Me

My photo
saya reza purbaya orangnya homoris dan serius apabila serius

Translate

Paling Hits

sederhana banyak cinta

Thursday, 5 September 2013

Rumus-Rumus Fisika Lengkap

Gerak lurus beraturan

Sistem koordinat kutub dua dimensi
Gerak Lurus Beraturan (GLB) adalah suatu gerak lurus yang mempunyai kecepatan konstan. Maka nilai percepatannya adalah a = 0. Gerakan GLB berbentuk linear dan nilai kecepatannya adalah hasil bagi jarak dengan waktu yang ditempuh.
Rumus:
\!v=\frac{s}{t}
Dengan ketentuan:
  • \!s = Jarak yang ditempuh (km, m)
  • \!v = Kecepatan (km/jam, m/s)
  • \!t = Waktu tempuh (jam, sekon)
Catatan:
  1. Untuk mencari jarak yang ditempuh, rumusnya adalah \!s=\!v\times\!t.
  2. Untuk mencari waktu tempuh, rumusnya adalah \!t=\frac{s}{v}.
  3. Untuk mencari kecepatan, rumusnya adalah \!v=\frac{s}{t}.

Kecepatan rata-rata

Rumus:
\!v=\frac{s_{total}}{t_{total}} = \frac {V_{1} \times t_{1} + V_{2} \times t_{2} + ... + V_{n} \times t_{n}} {t_{1} + t_{2} + ... + t_{n}}

Gerak lurus berubah beraturan

Gerak lurus berubah beraturan adalah gerak yang lintasannya berupa garis lurus dengan kecepatannya yang berubah beraturan.
Percepatannya bernilai konstan/tetap.
Rumus GLBB ada 3, yaitu:
  • \!v_{t}=\!v_{0}+\!a\times\!t

  • \!s=\!v_{0}\times\!t+\frac{1}{2}\times\!a\times\!t^2

  • \!v_{t}^2=\!v_{0}^2+\!2\times\!a\times\!s
Dengan ketentuan:
  • \!v_{0} = Kecepatan awal (m/s)
  • \!v_{t} = Kecepatan akhir (m/s)
  • \!a = Percepatan (m/s2)
  • \!s = Jarak yang ditempuh (m)

Gerak vertikal ke atas

Benda dilemparkan secara vertikal, tegak lurus terhadap bidang horizontal ke atas dengan kecepatan awal tertentu. Arah gerak benda dan arah percepatan gravitasi berlawanan, gerak lurus berubah beraturan diperlambat.
Peluru akan mencapai titik tertinggi apabila Vt sama dengan nol.
t_{\text{maks}}= \frac {Vo} {g}
h= \frac {Vo^2} {2g}
t= {2} \times {t_{\text{maks}}}
{V_{\text{t}}^2}= V_{\text{0}}^2 - 2 \times{g} \times{h}
Keterangan:
  • Kecepatan awal= Vo
  • Kecepatan benda di suatu ketinggian tertentu= Vt
  • Percepatan /Gravitasi bumi: g
  • Tinggi maksimum: h
  • Waktu benda mencapai titik tertinggi: t maks
  • Waktu ketika benda kembali ke tanah: t

Gerak jatuh bebas

Benda dikatakan jatuh bebas apabila benda:
  • Memiliki ketinggian tertentu (h) dari atas tanah.
  • Benda tersebut dijatuhkan tegak lurus bidang horizontal tanpa kecepatan awal.
Selama bergerak ke bawah, benda dipengaruhi oleh percepatan gravitasi bumi (g) dan arah kecepatan/gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
v= \sqrt{2gh}
t= \sqrt{2h/g}
Keterangan:
  • v = kecepatan di permukaan tanah
  • g = gravitasi bumi
  • h = tinggi dari permukaan tanah
  • t = lama benda sampai di tanah

Gerak vertikal ke bawah

Benda dilemparkan tegak lurus bidang horizontal arahnya ke bawah.
Arah percepatan gravitasi dan arah gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
Vt= {Vo} + g \times t
Vt^2= {Vo^2} + 2 \times g \times h
Keterangan:
  • Vo = kecepatan awal
  • Vt = kecepatan pada ketinggian tertentu dari tanah
  • g = gravitasi bumi
  • h = jarak yang telah ditempuh secara vertikal
  • t = waktu

Gerak melingkar

Gerak dengan lintasan berupa lingkaran.
Circular motion diagram.png
Dari diagram di atas, diketahui benda bergerak sejauh ω° selama  t  sekon, maka benda dikatakan melakukan perpindahan sudut.
Benda melalukan 1 putaran penuh. Besar perpindahan linear adalah  2 \pi r  atau keliling lingkaran. Besar perpindahan sudut dalam 1 putaran penuh adalah  2 \pi  radian atau 360°.
 2 \pi rad = 360^\circ
 1 rad = \frac {360^\circ} {2 \pi} = \frac {180^\circ} {\pi} = 57,3^\circ

Perpindahan sudut, kecepatan sudut, dan percepatan sudut

Perpindahan sudut adalah posisi sudut benda yang bergerak secara melingkar dalam selang waktu tertentu.
 \theta = \omega \times t
Keterangan:
  •  \theta  = perpindahan sudut (rad)
  •  \omega  = kecepatan sudut (rad/s)
  • t = waktu (sekon)
Kecepatan sudut rata-rata ( \overline{\omega} ): perpindahan sudut per selang waktu.
 \overline{\omega} = \frac {\vartriangle\theta} {\vartriangle t} = \frac {\theta_{2} - \theta_{1}} {t_{2} - t_{1}}
Percepatan sudut rata-rata ( \alpha ): perubahan kecepatan sudut per selang waktu.
 \alpha = \frac {\vartriangle\omega} {\vartriangle t} = \frac {\omega_{2} - \omega_{1}} {t_{2} - t_{1}}
 \alpha  : Percepatan sudut (rad/s2)

Percepatan sentripetal

Arah percepatan sentripetal selalu menuju ke pusat lingkaran.
Percepatan sentripetal tidak menambah kecepatan, melainkan hanya untuk mempertahankan benda agar tetap bergerak melingkar.
 A_{s} = \frac {v^2} {r} = \omega^2 r
Keterangan:
  • r : jari-jari benda/lingkaran
  • As: percepatan sentripetal (rad/s2)

Gerak parabola

Gerak parabola adalah gerak yang membentuk sudut tertentu terhadap bidang horizontal. Pada gerak parabola, gesekan diabaikan, dan gaya yang bekerja hanya gaya berat/percepatan gravitasi.
Gerak parabola.png
Pada titik awal,
Vo_{x} = Vo \times \cos \alpha
Vo_{y} = Vo \times \sin \alpha
Pada titik A (t = ta):
Va_{x} = Vo_{x} = Vo \times \cos \alpha
Va_{y} = Vo_{y} - g \times t_{a}
Letak/posisi di A:
X_{a} = Vo_{x} \times t_{a}
Y_{a} = Vo_{y} \times t_{a} - 1/2 g {t_{a}^2}
Titik tertinggi yang bisa dicapai (B):
h_{max} = \frac {{(Vo\times\sin\alpha})^2} {2g} = \frac {{(Vo^2\times\sin^2\alpha})} {2g}
Waktu untuk sampai di titik tertinggi (B) (tb):
 V_{y}=0
 V_{y}= Vo_{y} - g t
 0= Vo \sin \alpha - g t
t_{b} = \frac {{(Vo\times\sin\alpha})} {g} = \frac {Vo_{y}} {g}
Jarak mendatar/horizontal dari titik awal sampai titik B (Xb):
X_{b} = Vo_{x} \times t_{b}
X_{b} = Vo \cos \alpha \times (\frac {{(Vo\times\sin\alpha})} {g})
X_{b} = \frac {{Vo^2} \times \sin 2\alpha} {2g}
Jarak vertikal dari titik awal ke titik B (Yb):
Y_{b} = \frac {Vo_{y}^2} {2g}
Y_{b} = \frac {{Vo^2} \times \sin^2 \alpha} {2g}
Waktu untuk sampai di titik C:
t_{total} = \frac {{(2 Vo\times\sin\alpha})} {g} = \frac {2 Vo_{y}} {g}
Jarak dari awal bola bergerak sampai titik C:

X_{maks} = Vo{x} \times t_{total}

X_{maks} = Vo \times \cos \alpha \times \frac {{(2 Vo\times\sin\alpha})} {g}
X_{maks} = \frac {{Vo^2} \times \sin 2\alpha} {g}

MASSA JENIS

ρ = m / v
Keterangan :
  • ρ = Massa jenis (kg/m3) atau (g/cm3)
  • m = massa (kg atau gram)
  • v = volume (m3 atau cm3)

Muai panjang

Rumus:
\!L_{t}=\!L_{0}(\!1+\alpha\times\Delta t)
  • \!L_{t} = panjang akhir (m, cm)
  • \!L_{0} = panjang awal (m, cm)
  • \alpha = koefisien muai panjang (/°C)
  • \Delta t = perbedaan suhu (°C)

Muai volume

Rumus:
\!V_{t}=\!V_{0}(\!1+\gamma\times\Delta\!t)
Keterangan:
  • \!V_{t} = volume akhir (m3, cm3)
  • \!V_{0} = volume awal (m3, cm3)
  • \gamma = \!3\alpha = koefisien muai volume (/°C)
  • \Delta t = selisih suhu (°C)

Muai luas

Rumus:
\!A_{t}=\!A_{0}(\!1+\beta\times\Delta t)
Keterangan:
  • \!A_{t} = luas akhir (m2, cm2)
  • \!A_{0} = luas awal (m2, cm2)
  • \beta = \!2\alpha = koefisien muai luas (/°C)
  • \Delta t = selisih suhu (°C)

Kalor jenis

Rumus:
Q=m\times c \times\Delta\! t
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)
Untuk mencari kalor jenis, rumusnya adalah:
\!c=\frac{Q}{\!m\times\Delta\!t}
Untuk mencari massa zat, rumusnya adalah:
\!m=\frac{Q}{\!c\times\Delta\!t}

Kapasitas kalor

Kapasitas kalor adalah banyaknya kalor yang dibutuhkan oleh benda untuk menaikkan suhunya 1°C.
Rumus kapasitas kalor:
\!H=\frac{Q}{\Delta\!t}

\!H=\frac{\!m\times\!c\times\Delta\!t}{\Delta\!t}

\!H=\!m\times\!c
dengan syarat:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!H = Kapasitas kalor (Joule/°C)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)

Kalor lebur

Rumus:
\!Q=\!m\times\!L
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!L = Kalor lebur zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)

Kalor uap

Rumus:
\!Q=\!m\times\!U
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!U = Kalor uap zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)
Contoh Soal :
Berapa energi kalor yang diperlukan untuk menguapkan 5 Kg air pada titik didihnya, jika kalor uap 2.260.000 Joule/Kilogram ?
Jawab :
Diketahui  : m = 5 Kg
             U = 2.260.000 J/Kg

Ditanyakan : Q =..... ?

Jawab Q = m x U
        = 5 Kg x 2.260.000 J/Kg
        = 11.300.000 J
        = 11,3 x 106 J

Asas Black

Rumus:
\!Q_{terima}=\!Q_{lepas} Asas Black : Jumlah kalor yang diterima sama dengan jumlah kalor yang dilepas..

Energi mekanik

Energi mekanik adalah jumlah dari energi potensial dan energi kinetik.
 E_m = E_p + E_k

Energi potensial

Energi potensial adalah energi yang dimiliki suatu benda karena memiliki ketinggian tertentu dari tanah. Energi potensial ada karena adanya gravitasi bumi. Dapat dirumuskan sebagai:
 E_p = m \times g \times h
Keterangan:
  • Ep: Energi potensial (J)
  • m: massa benda (kg)
  • g: percepatan gravitasi (m/s2)
  • h: tinggi benda dari permukaan tanah (meter)

Energi kinetik

Energi kinetik adalah energi yang dimiliki suatu benda karena geraknya. Energi kinetik dipengaruhi oleh massa benda dan kecepatannya.
E_k = \frac{1}{2} \times m \times v^2
Keterangan:
  • Ek: Energi kinetik (J)
  • m : massa benda (kg)
  • v : kecepatan benda (m/s)

Energi kinetik pegas

E_k = \frac{1}{2} \times k \times x^2
Keterangan:
  • Ek: Energi kinetik pegas (J)
  • k : konstanta pegas (N/m²)
  • x : perpanjangan pegas (m)

Energi kinetik relativistik

E_k = (\gamma-1) E_0 = (\gamma-1) m_0c^2

Gaya

Gaya dalam pengertian ilmu fisika adalah seseatu yang menyebabkan perubahan keadaan benda.

Hukum Newton

Hukum I Newton

Setiap benda akan tetap diam atau bergerak lurus beraturan apabila pada benda itu tidak bekerja gaya.
 \Sigma F = 0

Hukum II Newton

Bila sebuah benda mengalami gaya sebesar F maka benda tersebut akan mengalami percepatan.
 \Sigma F = m \times a
Keterangan:
  • F : gaya (N atau dn)
  • m : massa (kg atau g)
  • a : percepatan (m/s2 atau cm/s2)

Hukum III Newton

Untuk setiap gaya aksi, akan selalu terdapat gaya reaksi yang sama besar dan berlawanan arah.
 F_{AB} = - F_{BA}

Gaya gesek

 F_{g} = \mu \times N
Keterangan:
  • Fg : Gaya gesek (N)
  •  \mu  : koefisien gesekan
  • N : gaya normal (N)

Gaya berat

 w = m \times g
Keterangan:
  • W : Gaya berat (N)
  • m : massa benda (kg)
  • g : gravitasi bumi (m/s2)

Berat jenis

 s = \rho \times g  atau  s = \frac {w} {V}
Keterangan:
  • s: berat bersih (N/m3)
  • w: berat janda (N)
  • V: Volume oli (m3)
  •  \rho : massak kompor(kg/m3)

Tekanan

 p = \frac {F} {A}
Keterangan:
  • p: Tekanan (N/m² atau dn/cm²)
  • F: Gaya (N atau dn)
  • A: Luas alas/penampang (m² atau cm²)
Satuan:
  • 1 Pa = 1 N/m² = 10-5 bar = 0,99 x 10-5 atm = 0,752 x 10-2 mmHg atau torr = 0,145 x 10-3 lb/in² (psi)
  • 1 torr= 1 mmHg

Tekanan hidrostatis

p_{\text{h}} = \rho\,\! \times g \times h
p_{\text{h}} = h \times s
Keterangan:
  • ph: Tekanan hidrostatis (N/m² atau dn/cm²)
  • h: jarak ke permukaan zat cair (m atau cm)
  • s: berat jenis zat cair (N/m³ atau dn/cm³)
  • ρ: massa jenis zat cair (kg/m³ atau g/cm³)
  • g: gravitasi (m/s² atau cm/s²)

Hukum Pascal

Tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan sama besar ke segala arah.
 \frac {F_{\text{2}}} {A_{\text{2}}} = \frac {F_{\text{1}}} {A_{\text{1}}}
Keterangan:
  • F1: Gaya tekan pada pengisap 1
  • F2: Gaya tekan pada pengisap 2
  • A1: Luas penampang pada pengisap 1
  • A2: Luas penampang pada pengisap 2

Hukum Boyle

 {V_{\text{1}}} \times {P_{\text{1}}} = {P_{\text{2}}} \times {V_{\text{2}}}

USAHA

 W = F \times S
 W = \int F dx = \int m v {\operatorname{d}v\over\operatorname{d}x} = \int m v dv
Keterangan:
  • W = usaha (newton meter atau Joule)
  • F = gaya (newton)
  • S = jarak (meter)
Usaha yang dilakukan oleh pegas:
 W = \frac {1}{2} \times k \times x^2
Keterangan:
  • W = usaha (newton meter atau Joule)
  • k = konstanta pegas (Newton/m2)
  • x = pertambahan panjang pegas (meter)

Periode dan Frekuensi Getaran

Periode Getaran

T=\frac{t}{n}

Dengan ketentuan:
  • \!T = Periode (sekon)
  • \!t = Waktu (sekon)
  • \!n = Jumlah getaran

Frekuensi Getaran

\!f=\frac{n}{t}
Dengan ketentuan:
  • \!f = Frekuensi (Hz)
  • \!n = Jumlah getaran
  • \!t = Waktu (sekon)

Periode Getaran

\!T=\frac{1}{f}

Dengan ketentuan:
  • \!T = periode getaran (sekon)
  • \!f = frekuensi(Hz)

Hubungan antara Periode dan Frekuensi Getaran

Besar periode berbanding terbalik dengan frekuensi.
  • \!T=\frac{1}{f}
  • \!f=\frac{1}{T}
Dengan ketentuan:
  • \!T = periode (sekon)
  • \!f = frekuensi (Hz)

Gelombang

Gelombang berjalan

Persamaan gelombang:
y = A \sin 2\pi (ft \pm \frac {x} {\lambda})
Keterangan:
  • a: amplitudo (m)
  • f: frekuensi (Hz)
  •  \lambda : panjang gelombang (m)

Rumus-Rumus Fisika Lengkap/Elektronika dasar

 \frac {1}{R_p} = \frac {1}{R_1} + \frac {1}{R_2} + \frac {1}{R_3} + ... + \frac {1}{R_n}
Resistor seri
 R_s = R_1 + R_2 + R_3 + ... + R_n
Rumus kapasitor seri
 \frac {1}{C_s} = \frac {1}{C_1} + \frac {1}{C_2} + \frac {1}{C_3} + ... + \frac {1}{C_n}
Rumus kapasitor pararel
C_p = C_1 + C_2 + C_3 + ... + C_n

0 komentar

Post a Comment

Lencana Facebook